美酒网 > 美酒常识
资讯 产品 行情 交易 品牌 知识

白酒气相色谱仪基本原理有哪些,气相色谱仪的工作原理是什么

1,气相色谱仪的工作原理是什么

气相色谱过程:待测物样品被蒸发为气体并注入到色谱分离柱柱顶,以惰性气体(指不与待测物反应的气体,只起运载蒸汽样品的作用,也称载气)将待测物样品蒸汽带入柱内分离。其分离原理是基于待测物在气相和固定相之间的吸附-脱附(气固色谱)和分配(气液色谱)来实现的。因此可将气相色谱分为气固色谱和气液色谱。

气相色谱仪的工作原理是什么

2,简要说明气相色谱分析的基本原理

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离:待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。就是纸层析的改进吧!

简要说明气相色谱分析的基本原理

3,气象色谱仪的原理

气相色谱仪分析过程:待测物样品被蒸发为气体并注入到色谱分离柱柱顶,以惰性气体(指不与待测物反应的气体,只起运载汽样品的作用,也称载气)将待测物样品蒸气带入柱内分离。其分离原理是基于待测物在气相和固定相之间的吸附-脱附(气固色谱)和分配(气液色谱)来实现的。因此可将气相色谱分为气固色谱和气液色谱。 气固色谱:利用不同物质在固体吸附剂上物理吸附-解吸能力不同实现物质的分离。由于活性(或极性)分子在这些吸附剂上的半永久性滞留(吸附-脱附过程为非线性的),导致色谱峰严重拖尾,因此气固色谱应用有限。只适于较低分子量和低沸点气体组分的分离分析。 气液色谱;通常直接称之为气相色谱。它是利用待测物在气体流动相和固定在惰性固体表面的液体固定相之间的分配原理实现分离。 转载于: http://www.36917.net/Article/cp/775.html

气象色谱仪的原理

4,气相色谱分析仪的原理

气相色谱的工作原理:实现色谱分离的先决条件是必须具有固定相和流动相。色谱分离的内因是固定相与被分离各组分发生的吸附(或分配)作用的差别,微观解释就是分子键相互作用力的差别。外因是由于固定相的不间断流动,使被分离组分与固定相发生反复多次的吸附、解析过程,这样就使那些在同一固定相上的移动速度吸附(或分配)系数只有微小差别的组分在固定相上的移动速度产生了很大的差别,从而达到各个组分的完全分离。
气相色谱仪根据试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出),由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离;分离后的组分按保留时间的先后顺序进入检测器,检测器根据组份的物理化学性质将组份按顺序检测出来并自动记录检测信号,产生的信号经放大后,在记录器上描绘出各组分的色谱峰;最终依据试样中各组分保留时间(出峰位置)进行定性分析或依据响应值(峰高或峰面积)对试样中各组分进行定量分析。

5,气相色谱仪分析原理

色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。 现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理: 由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。 从两相的状态分类: 色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。 如果想了解更多关于气相色谱仪,液相色谱仪的问题请登录:http://www.sdjp17.com
分配原理 通过挥发性不同识别

6,气相色谱法工作原理

气相色谱系统由盛在管柱内的吸附剂 或惰性固体上涂着液体的固定相和不断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出。以各组分从柱末端流出的浓度 c对进样后的时间t作图,得到的图称为色谱图。
转载:《分析测试百科网》 气相色谱法的分离原理及理论基础 气相色谱法的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。 气相色谱法的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而分离得好不好则取决于其动力学过程。 色谱过程动力学发展高效色谱技术及色谱峰形预测的理论基础 色谱过程动力学是研究物质在色谱过程中运动规律的科学。其研究的主要目的是根据物质在色谱柱内运动的规律解释色谱流出曲线的形状;探求影响色谱区域宽度扩张及峰形拖尾的因素和机理,从而为获得高效能色谱柱系统提供理论上的指导,为峰形预测、重叠峰的定量解析以及为选择最佳色谱分离条件奠定理论基础。 在色谱发展过程中,用来描述色谱过程动力学的理论模型主要有:1940年提出的平衡色谱理论,解释了部分实验事实,但由于该理论忽略了传质速率有限性与物质分子纵向扩散性的影响,对一些现象不能解释;1941年martin等人引入了理论塔板的概念,在该理论中,色谱过程被比拟为蒸馏过程,而色谱柱被视为一系列平衡单元-理论塔板的结合。在色谱柱足够长、理论塔板高度充分小,以及分配等温线呈线性的情况下,这一理论对色谱流出曲线分布和谱带移动规律,以及柱长与理论塔板高度h对区域扩张的影响等给予了近似的解释。但是塔板理论对影响理论塔板高度h的各种因素没有从本质上考虑,而色谱过程本质上并不是分馏过程,因而这一理论还只是半经验式的理论。 首先揭露影响色谱区域宽度内在因素的是纵向扩散理论和考察传质速率有限性的的速率理论。在气相色谱仪中有同时考察传质速率和纵向扩散影响的vandeemter方程式,考察径向扩散的golay毛细管色谱方程式。vandeemter方程式和golay方程式分别描述了填充柱和毛细管柱两种色谱柱的理论塔板高度h的各种影响因素,两个公式综合到一起可简化如下: h=a+b/u+(cg+cl)u色谱过程热力学色谱定性及研究高选择性色谱方法和柱系统等的理论基础 由气相色谱的分离原理可知,实现气相色谱分离的基本条件是欲被分离的物质有不同的分配系数,而不同的分配系数也是气相色谱定性鉴别组分的基础。物质在色谱过程中的保留是一种宏观现象,但引起保留的原因却是分子之间的微观作用。因此要研究影响物质保留的原因,必须从分子间的微观作用、分子的微观结构着手,在这一方面,统计热力学是最好的工具。 色谱过程热力学能够很好地解释气相色谱的保留值规律:利用分子结构参数直接预测气相色谱保留值;容量因子k’随柱温变化的规律;同类化合物中同系物保留值随分子中碳原子数目变化的规律;同族化合物的保留值随沸点变化的规律;双固定液的保留值变化规律。 朋友可以到行业内专业的网站进行交流学习! 分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

7,气液相色谱原理

气相色谱定量分析原理气相色谱法是一种分离分析方法。操作时使用气相色谱仪,被分析样品(气体或液体汽化后的蒸汽)在流速保持一定的惰性气体(成为载气或流动相)的带动下进入填充有固定相的色谱柱,在色谱柱中样品被分离成一个个的单一组分,并以一定的先后次序从色谱柱流出,进入检测器,转变成电信号,再经放大后,由记录器记录下来,在记录纸上得到一组曲线图(称为色谱图),根据色谱峰的峰高或峰面积就可以定量测定样品中各个组分的含量。气相色谱的定量检测方法一般有归一化法、内标法和外标三种方法,其各有优缺点。归一化法是将有机样品中所有组分的含量之和定位100%,计算出其中某一组分含量的百分数,其方便简单,样品进样量和流动相载气流速等对计算结果影响不大,但要求每个组分色谱峰面积能准确地计算,因此仅适合组分少的有机样品。内标法是向有机样品中加入标准已知含量的纯有机物(可以和样品中组分相同,也可以不同)进行气相色谱测定,然后利用欲测组分和内标物的色谱峰面积和定量校正因子进行定量分析,其避免了归一化方法的缺点,但需要标准标准称取有机样品和内标物的重量,而且选用的内标物的选取要求较高。外标法[14]是在进样量、色谱仪器及操作等分析条件严格固定不变的前提下,先使用不同含量的组分纯物质等量进样进行色谱分析,求出纯物质含量和色谱峰面积的关系,并绘出相应的定量校正曲线或给出线性方程式。然后将有机样品在相同条件下进行色谱分析,并根据定量校正曲线或线性方程式,计算出所需组分的定量分析结果。外标法比较简便,尤其适合相同样品的大批量测试,这对工业化生产或环境中某种有机物的检测或控制非常有效。但这一方法对液体或挥发性不好的有机物组分定量分析时,往往误差较大。 高效液相色谱定量分析原理 从分析原理上讲,高效液相色谱法和经典液相色谱(层析)没有本质的差别,但由于它采用了新型高压输液泵、高灵敏度检测器和高效微粒固定相,因而在操作和条件等方面已完全不同。高效液相色谱法特点:⑴由于新型高效微粒固定相填料的使用,分离能力高;⑵由于液相色谱柱具有高效,并且流动相可以控制和改善分离过程的选择性,选择性高;⑶检测灵敏度高;⑷由于高压输液泵的使用,相对经典液相色谱,分析速度快。另外,高效液相色谱适用于分析高沸点不易挥发、受热不稳定、分子量大和不同极性的有机物,尤其是生物活性物质的天然产物和高分子化合物等。其缺点有:⑴使用多种溶剂作为流动相,分析成本高于气相色谱法,且易引起环境污染,程序升温操作复杂;⑵缺少如气相色谱法中使用的通用性检测器;⑶不适用于在高压下易分解和变性的具有生物活性的生化样品。高效液相色谱的定性和定量分析原理和方法与气相色谱基本相同
原理主要有这几种:液—液分配色谱法 (liquid-liquid partition chromatography)及化学键合相色谱(chemically bonded phase chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式: 高效液相色谱计算公式式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; vs—固定相的体积;vm—流动相的体积。llpc与gpc有相似之处,即分离的顺序取决于k,k大的组分保留值大;但也有不同之处,gpc中,流动相对k影响不大,llpc流动相对k影响较大。 a. 正相液 — 液分配色谱法(normal phase liquid chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(reverse phase liquid chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。液—固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (x) 和溶剂分子(s)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是s),可表示如下:xm nsa ====== xa nsm 式中:xm--流动相中的溶质分子;sa--固定相中的溶剂分子;xa--固定相中的溶质分子;sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: k=[xa][sm]/[xm][sa] 式中:k为吸附平衡常数。[讨论:k越大,保留值越大。]离子交换色谱法 (ion-exchange chromatography) iec是以离子交换剂作为固定相。iec是基于离子交换树脂上可电离的离子与流 离子交换色谱柱动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。以阴离子交换剂为例,其交换过程可表示如下: x-(溶剂中) (树脂-r4n cl-)=== (树脂-r4n x-) cl- (溶剂中) 当交换达平衡时: kx=[-r4n x-][ cl-]/[-r4n cl-][ x-] 分配系数为: dx=[-r4n x-]/[x-]= kx [-r4n cl-]/[cl-] [讨论:dx与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。离子对色谱法 (ion pair chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原 离子色谱仪流程示意理可用下式表示:x 水相 y-水相 === x y-有机相 式中:x 水相--流动相中待分离的有机离子(也可是阳离子);y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);x y---形成的离子对化合物。 当达平衡时: kxy = [x y-]有机相/[ x ]水相[y-]水相 根据定义,分配系数为: dx= [x y-]有机相/[ x ]水相= kxy [y-]水相 [讨论:dx与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。离子色谱法 (ion chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(r-oh)作固定相,分离阴离子(如br-)为例。当待测阴离子br-随流动相(naoh)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 担体图示抑制柱上发生的反应: r-h na oh- === r-na h2o r-h na br- === r-na h br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子br-则被转化成了相应的酸h br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。空间排阻色谱法 (steric exclusion chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。分析方法:综述 色谱柱的填料和流动相的组分应按各品种项下的规定.常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进化学键合固定相反应样量、检测器的灵敏度等,均可适当改变, 以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2.系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子.色谱柱的理论板数 在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图化学键合固定相应用,量出供试品主成分或内标物质峰的保留时间t(r)和半高峰宽w(h/2),按n=5.54[t(r)╱w(h/2)]^2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。分离度 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(r)的计算公式为: 2[t(r2)-t(r1)] ,r= -w1+w2 式中 t(r2)为相邻两峰中后一峰的保留时间; t(r1)为相邻两峰中前一峰的保留时间; w1及w2为此相邻两峰的峰宽。 除另外有规定外,分离度应大于1.5。拖尾因子 为保证测量精度,特别当采用峰高法测量时,应检查待测峰的拖尾因子(t)是否符合各品种项下的规定,或不同浓度进样的校正因子误差是否符合要求。拖尾因子计算公式为: w(0.05h) t=-2d1 式中 w(0.05h)为0.05峰高处的峰宽; d1为峰极大至峰前沿之间的距离。 除另有规定外,t应在0.95~1.05间。 也可按各品种校正因子测定项下,配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成三种不同浓度的溶液,分别注样3次,计算平均校正因子,其相对标准偏差应不大于2.0%。朋友可以到行业内专业的网站进行交流学习!分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。
相关文章推荐...
大家都在看